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University of Franche-Comté, FEMTO-ST Laboratory, ENISYS Department, FCLAB, Rue Thierry Mieg, 90010 Belfort Cedex, France

Received 27 August 2007; received in revised form 20 December 2007; accepted 1 January 2008
Available online 17 January 2008

bstract

This paper presents an optimization approach applied to a whole fuel cell (FC) air supply system including its geometry and its control. The aim

s to optimize its power consumption along with its mass. Particle swarm optimization (PSO) algorithm is used to define the design parameters
f both permanent magnet synchronous motor (PMSM) and a fuzzy logic controller (FLC). The results are compared with those obtained by
sequential optimization process and advantages of co-design optimization approach are clearly shown. Indeed, a significant reduction of the

bjective function (made up on both motor mass and energy consumption) on a considered operating cycle can be obtained.
2008 Elsevier B.V. All rights reserved.
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. Introduction

Since 90s, problems of the greenhouse gas emissions con-
rol and hydrocarbon energy resources exhaustion, started again
esearches on fuel cell (FC) in many fields, such as transport, sta-
ionary power generation and portable applications [1]. Among
hese fields, the surface transports, that strongly use oil-based
ydrocarbons, is one of the sectors generating the strongest
reenhouse gas emissions. On the opposite, a FC directly sup-
lied by hydrogen does not generate locally any environmental
ollution. From this point of view, it is an interesting alternative
o the internal combustion engine.

A proton exchange membrane FC, which is the most com-
only used FC in the transport area, is an electrochemical

onverter which delivers electrical power and thermal energy
y a redox reaction starting from a fuel (generally hydrogen).
he energetic efficiency of FC itself is relatively high com-

ared to other more conventional technologies (#60% for proton
xchange membrane fuel cell efficiency and #32% for internal
ombustion engine efficiency). But its output power decreases
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ue to ancillary circuits (fuel (hydrogen) and fuel oxidizer (oxy-
en) supply, humidification, cooling, electric converter,. . .) that
re necessary to the correct operation of the FC (Fig. 1). Among
hese ancillaries, the air supply circuit (oxygen) of the FC gen-
rator is particularly “greedy” in energy [2]. It is classically
arried out by a motor-compressor. Electrical conversion net
fficiency of the energy brought by the fuel is around 50% but
p to 35% of the produced electrical energy is consumed by
he ancillaries (among this part, the 2/3 are consumed by the air
upply). Thus, air supply system optimization is an important
ilestone on the road of efficient FC systems [3]. In this context,

he main goal of this paper is to propose a new methodologi-
al optimization approach. In manners of electrical engineering,
he classical approach is to use sequential optimization. In this
ase, the design process has several steps starting from system
eometry optimization to finish with the calculation of the con-
rol laws. Such a methodology has already been proposed in
everal papers. In [4] the driving engine design of the com-
ressor unit is proposed. Similar works are carried out on other
ngines in [5,6]. [2] deals with an optimization of the air supply
ircuit controller to improve system performances. More gener-
lly, controller optimization for many engines are carried out in

7,8]. In [9], actuator control optimization is performed based
nly on the optimization of the scaling factors of a FLC. In [10],
SO is used to define parameters of a PID controller in order

o improve its performances. But is it really the optimal system
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Fig. 1. Basic schema of a fuel cell system [4].

hat is obtained with all these sequential methodologies? Our
roposal is to compare this classical approach to a simultaneous
ptimization (i.e. optimization of the whole system at the same
ime) methodology. Such an approach has been presented in
11,12] concerning mechanics, electronics and micromachine
omain and is similar to a multi-objective optimization [13].
he co-design being an emergent idea in electrical engineering,

he references are still limited. Our aim will thus be to apply a
o-design approach in order to evaluate its effectiveness and to
ompare it with the sequential one.

The paper is organized as follows. In Section 2, an overview
f the driving motor and compression head modelling is pre-
ented and fuzzy logic controller is introduced. Section 3
resents particle swarm optimization (PSO) and its imple-
entation on the considered co-design problem. The results

btained by both optimization methodologies (sequential and
imultaneous) are compared in Section 4. Finally, Section 5 con-
ludes this paper by pointing the key results and the possible
utlooks.

. Air supply circuit modelling and control

The considered air supply subsystem is here a motor-
ompressor built up from a rotary compressor and from a
ermanent magnet synchronous motor, which enables, asso-
iated to efficient control laws, to supply the FC stack with
he air flow, in order to produce the desired electrical power
14]. In case of use with a 5 kW proton exchange membrane
uel cell, considered specifications for this system are the
ollowing:

Maximum mass flow: 10 g s−1,
Maximum absolute outlet pressure: 2 bars,
Rated rotational speed: 3000 rpm,
Nominal mass flow: 6 g s−1.

.1. Analytical model of PMSM in rotor reference frame
Recent developments in microprocessors, magnetic materi-
ls and semiconductors technologies have offered an excellent
pportunity to use ac motors in high performance drive systems.
MSM became at the top of ac motors in the medium range of

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
ources 179 (2008) 121–131

ower and it became a very common choice in driving technol-
gy over the last few years due to some of its inherent advantages.
hose include high torque to current ratio, large power to weight

atio, high efficiency and robustness.
PMSM is modelled with an equivalent Park machine which

akes it possible to simplify motor equations. Inputs of this
odel are the three phase voltages (va, vb, vc) coming from the

nverter. Thanks to Park transformation, forward and quadratic
oltages (vd, vq) can be obtained from these three voltages.
otor flux expressions on forward and quadratic axes make it

ossible to evaluate forward and quadratic currents (id, iq).

vd

vq

]
= Rs

[
id

iq

]
+ d

dt

[
ψd

ψq

]
+ θ∗P

(π
2

)[ψd
ψq

]
, (1)

vd

vq

]
= Rs

[
id

iq

]
+ d

dt

[
ψd

ψq

]
+ θ∗

[
ψd

ψq

]
, (2)

here

d = (Ld + l′d)id +
√

3

2
ψf, (3)

q = (Lq + l′q)iq. (4)

d and Lq are the forward and quadratic axes cyclic inductances
nd l′d and l′q the forward and quadratic axes leakage inductances.

Expression of the motor electromagnetic torque (Tm) can thus
e obtained:

m = piq

(
((Ld + l′d) − (lq + l′q))id −

√
3

2
ψf

)
. (5)

ith p the number of poles and ψf the magnetisation flux per
ole.

Then the variables such asψf, e (electro-motive force), Ld, Lq,
(mutual between two phases of machine) and the torque can

e expressed with motor structural parameters and a completely
djustable model of the motor is obtained.

In our case, 11 parameters defining the PMSM structure are
onsidered. These parameters are:

Recs(stator yoke external ray) = 61.6 mm

hcs(stator yoke height) = 5.9 mm

hd(cog height) = 17.7 mm

ld(cog width) = 5 mm

ent(air–gap) = 1 mm

hai(magnet height) = 3 mm

hcr(rotor yoke height) = 6.1 mm

Lfer(machine length) = 30 mm

p(pole pair number) = 2

dfil(wire diameter) = 1.94 mm
ns(windings number of turns) = 40

Rs(stator coil resistance) = 0.17Ω

Ls(stator coil inductance) = 6.83.10−4 H
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umerical values are the ones corresponding to the starting
alues that have been used next in the design process.

.2. Analytical model of compressor

Rotary vane compressor model is constituted of four inputs
rotational speed, inlet air temperature, and inlet and outlet air
ressures) and four outputs (air mass flow, air outlet temperature,
ompressor torque and mechanical power). Parameters used for
odelling are the compressed volume per revolution (Vcomp/rev)

btained thanks to the compressor sizes, air heat capacity (cp)
nd air mass constant (rair).

The expression of air mass flow (qm) is depending on rota-
ional speed (ω) of compressor according to

m = 1

2π
ηvVcomp/revωρair (6)

ith ω: rated rotational speed (rpm), ρair: air inlet density
kg m−3), qm: mass flow (kg s−1), Vcomp/rev: volume compressed
y revolution (m3 rev−1), ηv: volumetric efficiency of rotary
ane compressor.

Other important relation for compressor modelling is the
xpression of requested power linked to air flow and pressure
atio. This relation is obtained from the temporal derivative of
he work capacity needed to compress the air value from the
nlet to the outlet pressure.

c = 1

ηadηm
qmcpTincomp

[(
pout

pin

)(γ−1/γ)

− 1

]
(7)

ith pin and pout: inlet air pressure (Pa) and outlet air pressure
Pa), Tincomp: inlet air temperature (K), cp: air heat capacity, ηad:
diabatic efficiency of rotary vane compressor, ηm: mechanic
fficiency of rotary vane compressor, γ: polytrophic coefficient
hich depends on compressor load conditions (friction and heat

ransfers).
Finally, compressor outlet pressure is defined by pressure

rops inside FC stack itself. Experimentally, it can be verified
hat the pressure drops are directly linked to gases circula-
ion speed by a coefficient value 69.3 [2]. Thus the following
mpirical evolution is considered here (for the chosen FC
tack):

out = pin + 69.3ω (8)

.3. Design a fuzzy logic controller

Fuzzy systems are being used successfully in an increasing
umber of application areas, they use linguistic rules to describe
ystems. Fuzzy logic provides a general concept for description

nd measurement. Most fuzzy logic systems encode human
easoning into a program to make decisions or control a system.
uzzy logic comprises fuzzy sets, which are a way of repre-
enting non-statistical uncertainty and approximate reasoning,
hich includes the operations, used to make inferences in fuzzy

ogic.

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Fig. 2. Input and output membership function.

.3.1. The fuzzy logic controller
The fuzzy control comprises three steps: fuzzification, infer-

nce, defuzzification [8]. In the first step, the FLC receives
ormalized physical size as input. The input is then developed
n terms of a set of N membership functions (MF) which cover
he range of interest of the corresponding indicator. Each MF is
eighted according to its degree of membership mi in the devel-
pment. Typically, for real-time control triangular MFs are used
or their simplicity (Fig. 2).

In the second step, the inference operation represents the if-
hen implication. The goal is to interconnect input membership
nd output membership of the controller. In the last step, defuzzi-
cation, the results of the inference step are combined into a
ingle value for each controller output.

In the present case, for implementation of internal air flow
egulator, Takagi-Sugeno fuzzy logic controllers have been used
ecause they allow minimizing sampling time. In order to reg-
late and supply the required air quantity with an acceptable
esponse time to the FC stacks, a non-linear fuzzy PD + I reg-
lator (Fig. 3) has been chosen because of its high dynamic,
recision and robustness [15].

.3.2. FLC considered optimization parameters
In our case, the following tuning parameters of the controller

re considered like most significant (Fig. 3):

Three parameters corresponding to the scaling factors,
Six parameters corresponding to the starting points and apex
points of the membership functions,
One parameter corresponding to the integral corrective coef-
ficient.

Those are:
PSe(positive small membership value on input entry of controller) = 0.254

PVSe(positive very small membership value on error input) = 0.033

PSde(positive small membership value on the error variation input) = 0.7

PVSde(positive very small membership value on the error variation) = 0.21

NSs(negative small membership value on the output) = −0.8

NVSs(negative very small membership value on the output) = −0.615

em(scaling factor on the error input) = 10 g s−1

1

dem(scaling factor on the error variation input) =

τ.T
(τ + 0.4T )Teem

gm(scaling factor on the output) = 2.07

KT
(τ + 0.4T )em

Ki(coefficient of the integral correction) = 1.6

KT
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Fig. 3. Scheme of fuzzy PD + I controller principle.

ith τ: time-constant, T: delay, K: static gain, Te: sampling
eriod.

. Optimization

.1. Considered operating cycle and objective function

The complete air supply circuit system is tested on a step
et point and on a vehicle driving cycle. The first one presents
n amplitude of 10 g s−1 during a 138-ms cycle and the sec-
nd one is a vehicle normalized mission profile (Fig. 4) that is
educed from the vehicle simulator program, Advisor® (profile
CYC UDDS: Urban Dynamometer Driving Schedule”), used
n embedded FC systems experimentation [16].

In order to optimize this system for these set points the objec-
ive function has to be defined. For example, objective function
f) is here, for step set point the following:

= rt

rrt · 2
+ ec

rec · 2
(9)

ith rt the rising time, rrt the reference system rising time, ec
he energy consumption and rec the reference system energy
onsumption.

That allows obtaining a 50% influence of the energy crite-
ion and a 50% influence of the rising time on the optimization,
eading to both an economic and dynamic system.
.2. The reference system

Classically, optimization methodologies applied to this kind
f system are sequential, firstly optimizing the actuator alone,

ig. 4. Fuel cell air mass flow (kg s−1) consumption profile deduced from
dvisor® (CYC UDDS) on 60 s.

r
fl
p

s
m
c

Fig. 5. The reference system PMSM structure.

hen, defining the control for the actuator. Nevertheless, a lim-
tation of this approach is that the capacities of the control are
hen limited by the actuator structure itself. The proposed new
pproach carries out system global optimization in calculating,
ointly, both the optimal actuator structural parameters and the
ptimal control law parameters.

Thanks to the values of the reference system (given in pre-
ious section), the general shape of the motor (Fig. 5) and the
ontrol surface (Fig. 6), that reflects the control strategy imposed
n the controller, can be obtained. This control surface gives a 3D
epresentation of the control law realized by the FLC. The two
rst dimensions are the two normalized inputs of the FLC, the

ast dimension gives the normalized control output of the FLC.
he reachable power greatly depends on the air flow within the
tack. If the air supply circuit cannot respond quickly enough
o the requested air flow, the FC life time is restricted. Thus, a
hosen air flow dynamic (rise time: 138 ms) is here supposed to
e requested by the FC. This rise time value has been obtained
onsidering the oxygen volume (0.69 g) that is present inside the
athode compartment and the time during which this oxygen can
upply the fuel cell in case of a nominal current set point on our
eal experimental 5 kW FC stack [17]. With this system, the air
ow responses, obtained with the initial parameters settings, are
lotted in Fig. 7 for step set point and Fig. 8 for a mission profile.
According to Fig. 7, the rising time is 125 ms and no steady
tatic error is observed (for the reference system). The require-
ent of a rising time lower than 138 ms is respected. The system

onsumes 764 J for this cycle.

Fig. 6. The reference system control law strategy.
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Fig. 7. The reference system response of air mass flow to step set point.

Fig. 8 gives the response of the system for dynamical solici-
ation. We can see that smearing errors is almost null (maximum
ransient error is about 8.17 × 10−4 g s−1). The system con-
umes 45,129 J for this cycle of 60 s.

Now let us define the exploration domain for each optimiza-
ion parameter.

Recs ∈ [0.01, 0.1]

hcs ∈ [0.003, 0.01]

hd ∈ [0.005, 0.03]

ld ∈ [0.003, 0.01]

ent ∈ [0.0005, 0.005]

hai ∈ [0.003, 0.01]

hcr ∈ [0.003, 0.015]

Lfer ∈ [0.01, 0.1]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪

PSe ∈ [0, 1]

PVSe ∈ [0, 1]

PSde ∈ [0, 1]

PVSde ∈ [0, 1]

NSs ∈ [−1, 0]

NVSs ∈ [−1, 0]

de ∈ [0, 10]

(10)
p∈ [1, 6]

dfil ∈ [0.0002, 0.005]

ns ∈ [0, 100]

⎪⎪⎪⎪⎪⎪⎪⎩g∈ [0, 10]

k ∈ [0, 10]

t
b
p
b

Fig. 8. The reference system response of air
ig. 9. Principle of the displacement of a particle in a two-dimensional space.

xploration domain for each variable with Recs, hcs, hd, ld, ent,
ai, hcr, Lfer, dfil in millimeter.

.3. Particle swarm optimization

.3.1. Laws of the PSO
PSO belongs to the broad class of stochastic optimization

lgorithms. The ideas that underlie PSO are not inspired by the
volutionary mechanisms encountered in natural selection, but
ather by the social behaviour of flocking organisms, such as
warms of honeybees and fish shoals. It has been observed that
he behaviour of the individuals that belong to a flock adheres
o fundamental rules like nearest-neighbour velocity matching
nd acceleration by distance [18,19]. PSO is a population-based
lgorithm that uses a population of individuals to probe promis-
ng regions of the search space. In this context, the population is
alled a swarm and the individuals are called particles. Each par-
icle moves with an adaptable velocity within the search space
Fig. 9), and keep in its memory the best position it ever encoun-

ered. In the global variant of PSO, the best position ever reached
y all individuals of the swarm is communicated to the whole
articles. In the local variant, each particle is assigned to a neigh-
ourhood consisting of a specified number of particles. In this

mass flow to step dynamic solicitation.
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ase, the best position ever reached by the particles that com-
rise the neighbourhood is communicated among them [20].
his paper considers the global variant of PSO only.

Let us assume a D-dimensional search space S, S ⊂ IRD,
nd a swarm consisting of N particles. The ith particle is a
-dimensional vector has the following coordinates:

i = (xi1, xi2, . . . , XiD)T ∈ S
he velocity of this particle is also a D-dimensional vector such
s

i = (vi1, vi2, . . . viD)T ∈ S
he best previous position encountered by the ith particle is a
oint in S, denoted as

i = (pi1, pi2, . . . piD)T

f g is the index of the particle that reached the best previous
osition among all the individuals of the swarm, and t is the iter-
tion counter. Then, according to the version of PSO, a parameter
alled the constriction factor is defined by Clerc [21]. The swarm
s thus manipulated according to the following equations:

i(t + 1) = χ[Vi(t) + c1r1(Pi(t) −Xi(t))

+ c2r2(Pg(t) −Xi(t))] (11)

i(t + 1) = Xi(t) + Vi(t + 1) (12)

here i = 1, 2, . . ., N, χ is the constriction factor, c1 and c2
with experimental value of 2.5) denote the cognitive and social
arameters, respectively, and r1, r2 are random numbers uni-
ormly distributed in the interval [0,1].

The value of the constriction factor is typically obtained
hrough the formula [21]:

χ = 2κ

φ − 2 +
√
φ2 − 4φ

, for φ > 4

χ = √
κ, for φ ≤ 4

with κ = 1 and φ =

.4. Constraint handling

In the literature, several studies, which proposed to extend
SO to constrained optimization problems, are reported, and
ifferent constraint handling techniques were used.
Parsopoulus [22] converted the constrained optimization
roblem into a non-constrained optimization problem by adopt-
ng a non-stationary multi-stage assignment penalty function
nd then applying PSO to the converted problems. Ray [23]

a
t
T
t

ources 179 (2008) 121–131

+ c2r2

⎫⎪⎬
⎪⎭(13)

mployed a Pareto ranking scheme to handle constraints, which
s a concept of multi-objective optimization.

Here, a simple but efficient method is introduced to solve
onstrained optimization problems. The preserving feasibility
trategy is implemented to deal with constraints. Two modifica-
ions of the PSO algorithms have been proposed:

1) when updating the memories pBest (coordinates of best fit-
ness value of each particles) and gBest (coordinates of best
fitness value of all particles), each particle only keep feasi-
ble solutions in its memory and leave aside other solutions
that do not respect imposed constraints,

2) during the initialization process, one particle, at least, is
initialized started with feasible solution.

Compared to other constraint handling techniques, this
pproach has the following advantages:

1) It is quite simple. There is no pre-processing to take into
account the constraints and there is neither complicated
manipulation. Fitness function and constraints are handled
separately, thus there are no limitations concerning the con-
straints.

2) It is faster. The only part of the algorithm dealing with con-
straints is to check if a solution satisfies all the constraints.
This will reduce the computation time when handling mul-
tiple or complicated constraints.

Examples of physical constraints are given as following:

.4.1. Implementation of PSO
The implementation of PSO program is easy and only takes a

ew lines. For example, in our case, the algorithm programming
n Matlab® uses 25 lines. More precisely the different steps of
he PSO program are described in Fig. 10.

.5. Optimization process

The control concept, using field oriented control and imple-
entation of fuzzy logic controller on the motor-compressor

roup is shown in Fig. 11. Firstly, for this model, the PSO

lgorithm generates motor construction parameters and con-
rol law parameters. In the second step, the model is simulated.
he third step consists in simulation result evaluation in order

o calculate the value of optimization criterion f. Finally,
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Fig. 10. Flow chart of optimization process by PSO.

new set of optimization parameters is evaluated (cf. step
).

In our case, all optimizations are based on 401 iterations and
0 particles in order to ensure equity in comparing the methods.
ccording to numerous papers, the choice of 20 particles is

uitable for a wide number of optimization processes. Stochastic
ptimization methods ensure finding the global optimum with an
nfinite time of optimization what is not really conceivable. The
hoice of 401 iterations is based on our own simulation know-
ow and on the constraint to have a reasonable computational
ime.

Let us have a look at the optimization progress (cf.

igs. 12 and 13). On Fig. 12, the progress (during iterations)
f the state of particles is provided. The particles respecting all
he imposed constraints are entered as good particles. We can
bserve the increase in the number of good particles with the

a
c
p
t

Fig. 11. System
Fig. 12. Evolution of good particles percentage during optimization.

ncrease in the iteration count. Reaching a certain iteration count
e see a sudden fall of the number of good particles which can
e explained by the process of dispatching, i.e. when 90% of the
articles are in an hypersphere dimension R (another variable),
hey are dispersed randomly in search space. That is a comple-

entary function making it possible to decrease the probabilities
f being blocked in a local minimum.

Fig. 13 provides the evolution of the objective function which
egins with a value of 0.807 that corresponds to the objective
unction obtained for the reference system and stops with a value
f 0.31 that is the value of the objective function obtained on
he system defined by simultaneous optimization on an indi-
ial solicitation. The objective function evolution becomes very
low after 250 iterations. Furthermore, particles are three times
edistributed between iteration 250 and iteration 401. It is thus
ossible to say it is at least a local optimum.

. Results

.1. Sequential optimization

Firstly, a sequential optimization method for the motor-
ompressor and its control has been carried out. The
ptimization process starts with PMSM optimization based on

n efficiency criterion. PSO leads to a PM motor with an effi-
iency of 95% (Fig. 14). Then using PSO, optimal control law
arameters are computed (considering the two types of set points
hat have been considered). For instance, considering a step set

model.
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Fig. 13. Objective function evolution during optimization.
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Fig. 16. Response in air mass flow at a step set point.
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ig. 14. PMSM structure (for indicial set point) for the system optimized by
equential method.

oint, the control law obtained by PSO enable us to build the
ontrol surface presented in Fig. 15.

This motor-compressor group system provides a response in
ass flow with a rising time of 132 ms, without steady-state

rror and with a consumption of 459 J for this cycle (Fig. 16).
Now, for the dynamic solicitation the control law obtained by

SO enables to build the control surface of Fig. 17. These control

aw and motor design provide a response in mass flow with very
eak smearing errors corresponding to a maximal interval of
.689 and a consumption of 9718 J on this 60 s cycle (Fig. 18).

ig. 15. Control law surface (for indicial set point) for the system optimized by
equential method.

e
f
a

Fig. 17. Control surface obtained by sequential optimization.

.2. Coupled optimization

Secondly, simultaneous optimization method for the motor-
ompressor and its control has been performed. Using this
ethod, PSO carries out an iterative research in order to obtain

he 21 parameters of the engine and the fuzzy controller param-

ters that will minimize the objective function. The objective
unction is defined to achieve the goals of desired consumption
nd performance.

Fig. 18. Response in air mass flow for the dynamic set point.
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Fig. 19. PMSM structure for the system optimized simultaneously.
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Fig. 20. Control law surface for the system optimized simultaneously.

For the step set point, the parameters obtained by PSO gen-
rate the motor geometry and the control surface shown in
igs. 19 and 20.

In this case, a rising time (for air mass flow) of 25 s and a
teady-state error are obtained with a light over-shooting, and a
onsumption of 568 J. We can see the response in Fig. 21.

In short, we obtain, with a simultaneous optimization, a sys-
em much more powerful than the reference system or the system
ptimized sequentially and a system that has power consump-

ion much lower than the reference one but a little energy-hungry
han the sequentially optimized system.

Fig. 21. Response in air mass flow step set point.
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F
m

ig. 22. PMSM for the system optimized by simultaneous optimization.

The greediness of the system optimized simultaneously
omes from the ratio between the energy consumption and the
erformance to form the objective function. Thus by modifying
his ratio, different systems could have been obtained (less or

ore dynamic, less or more powerful).
For the dynamic set point, the parameters given by PSO gen-

rate the engine profile and the control surface of Figs. 22 and 23.
These control laws and engine give us a response in mass flow

ith a very small smearing errors (maximal interval of 0.4788 g)
nd a consumption of 9133 J for this cycle of 60 s. The response
s shown in Fig. 24.

Thus, with a simultaneous optimization, we obtain a system
uch more economic than the sequentially optimized system

nd on enormously more economic than the reference system.
he counterpart is that the motor obtained by sequential opti-
ization is double sized versus the reference one and that the
achine obtained by simultaneous optimization is still a little

igger than the last one (Table 1). Ultimately, the previous results
rove the effectiveness of the simultaneous optimization method
sing the particular swarms.

.3. Coupled optimization with mass/energy criterion

Previous optimizations allow seeing PSO sizing capacity and

mprovement ability by system approach. But to obtain a real-
stic and useful structure of PMSM, it is necessary to adapt the
ptimization criterion. When we optimize only on an energetic

ig. 23. Control law surface for the system optimized by simultaneous opti-
ization.
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Fig. 24. Response in air mass flow at the dynamic set point.

Table 1
Summary table of the optimized system characteristics

Characteristic size Initial system System optimized sequentially
for a dynamic solicitation and an
energy criterion

System optimized simultaneously
for a dynamic solicitation and an
energy criterion

System optimized simultaneously
for a dynamic solicitation and a
mass/energy criterion

External radius 61.6 mm 79.1 mm 70.4 mm 75.7 mm
Motor length 30 mm 49.2 mm 73.9 mm 16.05 mm
Pole pair 2 2 2 6
E 9,133 J 10,886 J
M 8.72 kg 1.07 kg

c
m
t
i
P
u
n
f
(
e
o
t

F
m

nergy consumption 45,129 J 9,718 J
otor mass 3.39 kg 6.94 kg

riterion, the algorithm tends to increase motor length to mini-
ize energy consumption. But it is not always acceptable. It is,

hus, more interesting to take an optimization criterion which
s a compromise between energetic consumption and mass of
MSM. Optimization on 401 iterations with 20 particles in a
nique swarm with a mass/energy criterion allows obtaining one
ew system. Fig. 25 shows PMSM structure and Fig. 26 shows
uzzy logic control law surface. This new system has an answer
Fig. 27) for the dynamic solicitation with a maximal smearing

rror of 4.34e-5 g and a consumption of 10,886 J on the cycle
f 60 s. This system has more important energy consumption
hat both systems previously optimized but the energy motor is

ig. 25. PMSM for the system optimized by simultaneous optimization with a
ass/energy criterion.

Fig. 26. Control law surface for the system optimized by simultaneous opti-
mization with a mass/energy criterion.

Fig. 27. Response in air mass flow for the dynamic set point for the system
optimized by simultaneous optimization with a mass/energy criterion.
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maller. Table 1 compares obtained system characteristics. It is
harply visible that for about 20% more important energy con-
umption, motor mass is divided by 8. For an embedded system,
his mass gain is very consequent.

. Conclusion

In this paper, an innovating optimization approach for the
esign of a FC motor-compressor group shows its effective-
ess based on the results obtained for various design tests. This
ethod, known as simultaneous design, uses a system approach

n order to design the whole system. This method combined
ith a heuristics such as PSO, shows its effectiveness in terms
f implementation simplicity and required computing time. The
ifferent results proved that simultaneous optimization gives
etter results on this system than the sequential approach. How-
ver this approach must be validated on experimentation in real
ime. Moreover, it is presumable to still improve our results by
ncluding the parameters of the compression head model in the
imultaneous optimization. Indeed, it will give a greater degree
f freedom to the optimization program in order to achieve
ur goal to minimize the power consumption of the motor-
ompressor on a given mission cycle. Improvement could also be
ade into the analytical model of PMSM by taking into account

xcess losses such as iron or mechanical losses. This work is on
rogress in our laboratory.
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